Topographic Analysis Of The Glenoid And Proximal Medial Tibial Articular Surfaces – A Search For The Ideal Match For Glenoid Resurfacing

Anil K. Gupta, MD, MBA
Andrew Lee, MD, Brian Forsythe, MD, Joshua Harris, MD, Frank McCormick, MD, Geoffrey Abrams, MD, Nikhil N. Verma, MD, Anthony A. Romeo, MD, Nozomu Inoue, MD, PhD, Brian J. Cole, MD, MBA

Midwest Orthopaedics at Rush
Department of Orthopaedic Surgery
Rush University Medical Center

AOSSM Annual Meeting
July 10-14th, 2013
Disclosures

• The authors have no conflicts of interest in relation to this study.
• Disclosures:
 • This study was supported in part by NIH/NCCAM Grant 1R01AT006692-01A1.
 • Dr. Cole receives grants from Musculoskeletal Transplant Foundation and AANA; receives royalties from Arthrex and DonJoy Orthopedics; is a paid consultant for Arthrex, Zimmer, Genzyme, and Carticept; and has received fellowship support from Smith & Nephew.
 • Dr. Verma is a paid consultant for Smith & Nephew, has stock options in Omeros, receives royalties from Vendico Medical-Orthopedics Hyperguide, and has received fellowship support from Smith & Nephew.
 • Dr. Romeo is a paid consultant and receives royalties from Arthrex, Inc. He also receives royalties from Mosby-Elsevier. He receives research support from Arthrex, Inc., Ossur, and Smith and Nephew.
Background

- **Glenohumeral Arthritis**
 - Predictable pain relief with TSA 1,5,7,8
- **What to do with young, active patients?**
 - Idiopathic arthritis
 - Chronic steroid-induced
 - Post-surgical arthritis – Anchors, pain pumps
 - Prior infection
 - Post-traumatic
- **Humeral Side**
 - Osteochondral Allograft
 - Resurfacing
 - Hemiarthroplasty
- **What about the glenoid?**
Background

- Glenoid resurfacing options:
 - Soft tissue resurfacing
 - Achilles allograft, lateral meniscus allograft, tissue matrices
 - Limited efficacy due to failure to restore anatomy and provide adequate pain relief \(^4,6,9,13,15,\)
 - Difficulty in situations of glenoid bone loss \(^6,18,20,\)
 - Alternative: osteochondral allografting \(^10,12\)
 - Limited availability of scapulae
 - Immunogenicity
Purpose

• Quantify the articular surface topography of the glenoid and medial tibial plateau via 3-dimensional (3D) modeling
• To determine if the medial tibial articular surface provides an anatomic topographic match to the articular surface of the glenoid
Hypothesis

• Medial tibial plateau articular surface will provide a suitable osteochondral harvest site due to its concavity and anatomic similarity to the glenoid
Methods

- Fresh-frozen human cadavers
 - 4 Glenoids
 - 4 Proximal Tibiae
 - All Male, <60yo
 - No evidence of arthritis
- CT- Coronal and sagittal 0.625mm slices
- 3D reconstructions
Methods

• Images exported into point-cloud models (Mimics, Belgium)

• Coordinate map created
 • Glenoid and medial tibial plateau articular surfaces

• Glenoid articular surface
 • Defined as best-fit circle of the glenoid articular surface with a 2mm bony rim
Methods

- Two zones of the medial tibial articular surface (anterior and posterior) quantified

- Glenoid superimposition assumed two-thirds of AP dimension of plateau
Methods

- Glenoid surface virtually placed on tibial articular surface
- Glenoid surface reoriented so that direction of glenoid surface eigenvector matched that of tibial surface
Methods

- Glenoid surface rotated 360 degrees in 1° increments
- Mean distance difference calculated at each rotating angle
Methods

- Statistical Analysis
 - Non-parametric Wilcoxon signed rank test
 - P-value of less than 0.05 was considered statistically significant
Results

- Mean distance difference in articular congruity of all surface points of all 16 combinations
 - 0.74 mm (Std. Dev. ± 0.13 mm)
Results

- Mean distance difference of anterior and posterior two-thirds of the medial tibial articular surface
 - Anterior
 - 0.72 mm (± 0.13 mm)
 - Posterior
 - 0.76 mm (± 0.16 mm) (p=0.187)
Conclusions

• Medial tibial articular surface may provide an appropriate anatomic match to the glenoid articular surface

• Both anterior and posterior two-thirds of the medial tibial plateau may serve as potential sites for osteochondral graft harvest

• Methodology can be applied to future studies evaluating the ideal sites of graft harvest to treat zonal glenoid bone wear and/or loss
Strengths/ Limitations

• **Strengths**
 - 3D topographic quantification analysis
 - Novel concept
 - Validated methodology

• **Limitations**
 - Limited number of specimens
 - Specimens without osteoarthritis
 - Does not account for cartilage thickness
 - Future studies with more specimens, Isovue
References

